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Abstract

The quality of a multispectral color image acquisition sys-
tem depends on many factors, the spectral sensitivity of the
different channels being one of them. In a relatively com-
mon setup a multispectral camera is being implemented by
coupling a monochrome digital camera with a set of optical
filters, typically mounted on a filter wheel. The properties
of these filters is an important component of the system
design.

Different methods have been proposed for the design
or selection of appropriate filters. In this paper we review
several methods used for selection of an optimal subset of
filters from a set of available filters. The different filter
selection methods are subjected to a comprehensive evalu-
ation procedure, in which their quality is evaluated mainly
in terms of the ability of the resulting system to reconstruct
scene spectral reflectances.

1. Introduction

A relatively common approach to acquiring multispectral
color images is to use a monochrome digital camera cou-
pled with a set of color filters, as shown in Figure 1. Given
the spectral radiance of the light source and the spectral
sensitivity of the camera including the optics, then the spec-
tral sensitivity of the different channels of the acquisition
system is determined by the spectral transmittances of the
filters. The quality of a multispectral color image acquisi-
tion system depends on many factors, the spectral sensitiv-
ity of the different channels, and thus the choice of filters,
being one of them.

The design of optimal filters given an optimization cri-
terion has been proposed by several authors.1–8 A draw-
back with such methods is the cost and difficulty involved
in the practical production of the optimized filters.

Another approach encountered in many existing mul-
tispectral scanner systems is to use a set of heuristically
chosen color filters, which are typically equi-spaced over
the visible spectrum.9–14 Although promising results are
reported using such systems, there is reason to believe that
the choice of filters remains sub-optimal for a given task.
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Figure 1: A common setup of a multispectral color image acqui-
sition system using a filter wheel.

An intermediate solution can be used where the cam-
era filters are selected from a set of available filters. 1,2,15–17

This choice can be optimized, for example by taking into
account the statistical spectral properties of the objects that
are to be imaged, as well as the spectral transmittances of
the filters, the spectral characteristics of the camera, and
the spectral radiance of the illuminant. The main idea is
to choose the filters so that, when multiplied with the il-
luminant and camera characteristics, they span the same
vector space as the reflectances that are to be acquired in
a particular application, as suggested earlier e.g. by Chang
et al. 18, Schmitt et al. 19, Vora and Trussell20, and Mahy
et al. 21.

In the next section we present different methods for
selecting filters. The different selection methods are sub-
jected to a comprehensive evaluation procedure, in which
their quality is evaluated mainly in terms of the ability of
the resulting system to reconstruct scene spectral reflect-
ances, as described in Section 3. The experimental results
are presented and discussed in Section 4, and finally some
conclusions are drawn in Section 5.

2. Filter selection methods

In this section we present different methods for selecting
a subset of K̃ filters out of a set of K available filters.
We suppose known the spectral transmittances φk(λ), k =
1 . . .K, of the filters, as well as the spectral sensitivity
ω(λ) of the camera. After combining these functions, we
represent the filters (or more precisely the associated cam-
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era channel sensitivities) by the vectors yk,

yk = αk[φk(λ1)ω(λ1) . . . φk(λN )ω(λN )]t, (1)

for k = 1 . . .K. The normalization factors αk are typi-
cally16 chosen such that ‖yk‖ = 1.

The goal is then to select, among a set of K available
color filters, a subset of K̃ filters being well suited for our
application.

2.1. Equi-spacing of filter central wavelengths

A simple, heuristic, strategy is to choose a set of filters
where the dominant wavelengths are relatively equally spa-
ced throughout the visible spectrum. This approach is be-
ing used in many current multispectral color imaging sys-
tems9–14, for instance the VASARI scanner implemented
at the National Gallery in London used seven broad-band
nearly-Gaussian filters covering the visible spectrum in its
original configuration.12,14

2.2. Exhaustive search

In this selection method all possible filter combinations are
evaluated. Given any optimization criterion, this approach
can give the optimal set of filters. However, the complexity
of such an approach could be prohibitive, since it requires
the evaluation of

nc =
(

K

K̃

)
=

K!
K̃!(K − K̃)!

(2)

filter combinations. For a small number of filters, this me-
thod may be applicable, see e.g. Yokoyama et al. 22 who
evaluates the nc = 80730 combinations needed for a selec-
tion of K̃ = 5 filters from a set of K = 27, or Vora et al. 1,2

who selects K̃ = 3 filters from a set of K = 100 Wrat-
ten filters, requiring nc = 1.6 × 105 filter combinations.
However, when the number of available filters, as well
as the number of filters to be chosen increase, the com-
plexity grows considerably.16 For the example presented
by Maître et al. 15, where K = 37 and K̃ = 12, the
number of filter combinations to be evaluated would attain
nc = 1.8 × 109.

2.3. Maximizing orthogonality in characteristic reflec-
tance vector space

This method, first proposed by Maître et al. 15, and later
modified by Hardeberg16 is more physically related to the
problem which we have to solve, since it takes into account
the spectral properties of the available filters, the acquisi-
tion system, as well as the statistical spectral properties of
the surfaces that are to be imaged.

The central idea of the method is to select filters that
have a high degree of orthogonality after projection into

the vector space R(U(r)) spanned by the r most significant
characteristic reflectances ui, i = 1 . . . r, calculated by
Principal Component Analysis (PCA) of a set R of sample
reflectances. The matrix

U(r) = [u1u2 . . .ur], r ≤ rank(R) (3)

thus represents the orthonormal basis of the vector space
R(U(r)).

The projection of the kth filter on the jth characteristic
reflectance vector is ut

jyk and its projection in R(U(r))
is denoted as the r × 1 coordinate vector gk = U(r)tyk.
Note that gk corresponds to the camera responses through
the kth filter to a set of characteristic reflectances U(r).

By this algorithm, given the choice of the number of
characteristic vectors r that are taken into account, we can
choose a set of K̃ filters, having spectral transmittances of
φk(λ), k = k1, k2, . . . , kK̃ , as follows:

STEP 1: Considering the set of projections gk, k = 1 . . .
K, we choose as the first basis vector yk1 the one which
transfers most energy from the r most significant charac-
teristic reflectances:

k1 = arg
k

max
1<k<K

‖gk‖ (4)

That is, the filter that transfers most energy from the char-
acteristic reflectances is chosen.

STEP 2: The second filter yk2 is then the filter whose
projection onto R(U(r)) has a maximal component orthog-
onal to gk1 :

k2 = arg
k

max
1<k<K

k �=k1

∥∥gk − gk1n

(
gt

k1ngk

)∥∥ , (5)

where gk1n = gk1/‖gk1‖.

STEP i: Let G(i) = [gk1 ,gk2 , . . . ,gki ] denote the pro-
jections of the i first selected filters in R(U(r)). The fil-
ter yki+1 is then chosen such that its projection gki+1 =
U(r)tyki+1 has the largest component orthogonal to the
space R(G(i)).

The orthonormal basis of R(G(i)) spanned by the se-
lected filters projected onto the characteristic reflectance
space is denoted G(i)

n . It could be determined easily by
a Singular Value Decomposition (SVD) applied to G(i).
However, this would imply a complete recalculation of the
basis for each iteration. We propose to determine it in an
iterative manner as follows. The first component is de-
termined simply in step 1 by G(1)

n = gk1n. For the ith
iteration step, G(i)

n = [G(i−1)
n gin], where

gin =
gi − G(i−1)

n (G(i−1)t
n gi)

‖gi − G(i−1)
n (G(i−1)t

n gi)‖
(6)
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We then choose the (i + 1)th basis vector yki+1 for the
k = ki+1 that maximizes the following expression:

ki+1 = arg
k

max
1≤k≤K

k/∈{k1,k2,...,ki}

∥∥∥gk − G(i)
n

(
G(i)t

n gk

)∥∥∥ (7)

We note that this selection method has one free param-
eter, r, the number of characteristic reflectances that are
used to define the vector space R(U(r)) onto with the pro-
jections are done.

3. Evaluation procedure

In order to evaluate the quality of the proposed filter se-
lection algorithms, it is necessary to consider the quality
of the resulting multispectral color image acquisition sys-
tem in its entirety. This system quality depends on many
factors, and is closely related to the task the system is sup-
posed to solve. For example, designing an imaging system
for discriminating objects based on spectral reflectance21

requires different sensitivities than a system in which the
goal is to achieve a highest possible colorimetric accuracy.

To evaluate the resulting systems, we report and com-
pare the average RMS spectral estimation error d = ‖r −
r̃‖ over the colors of a test target, as well as the maxi-
mal RMS spectral estimation error. These metrics present
the advantage of being simple and general. To comple-
ment, we also report the average and maximal ∆E∗

ab us-
ing the D65 illuminant for the colorimetric calculations.
This metric obviously has the advantage of being closely
related to human color perception, but on the other hand
it has several serious limitations, illustrated for example
by the fact that it does not pick up any difference between
metameric spectra. Other quality measures could also have
been used20,23–27. Depending on the intent, these may be
based on colorimetric or spectral properties, on mean or
maximal errors in a data set, or alternatively on critical
samples for which the reconstruction quality is particularly
important for a specific application. Imai et al. 27 argue
wisely that a combination of quality measures should be
used.

In our model, the reflectance spectrum is estimated from
the camera responses by a linear model16 in order to min-
imize the expected RMS spectral estimation error on a set
of representative reflectances. If the K̃-channel camera re-
sponse to a spectral reflectance r is modelled by cK̃ =
Ytr, and the spectral estimation task as r̃ = QcK̃ , then
this estimation operator is given by

Q = RRtY(YtRRtY)−1. (8)

We could also have used other methods for estimating the
spectral reflectance from the camera response values, such
as the one proposed recently by Ribés et al. 28, 29.

4. Results and Discussion

For our simulations we have defined a camera system in
which the spectral sensitivity corresponds to what we wo-
uld typically achieve with a CCD camera under tungsten
light, see the dotted lines in Figure 2. For the filter selec-
tion method which takes into account a priori information
about the type of reflectances that are going to be imaged
(Section 2.3), we used a target of 64 oil paints prepared by
the National Gallery.16 This target was also used for the
evaluation.

In a first experiment we selected five filters from a set
of 20 Hoffman filters, using four different selection meth-
ods. The first method employed a heuristic approach (Sec-
tion 2.1), in which the filters were chosen manually, in or-
der that the resulting peak sensitivities were approximately
evenly distributed over the visible spectrum. In the second
method, we maximized the orthogonality as described in
Section 2.3, using the parameter r = 5. The final two
methods employed an exhaustive evaluation of all possible
filter combinations in order to minimize the mean RMS
and the maximal ∆E∗

ab, respectively. The resulting spec-
tral sensitivities of the camera channels are shown in Fig-
ure 2, while the spectral and colorimetric estimation er-
rors are reported in Table 1. As an illustration, we show
in Figure 3 four examples of spectral reflectances from the
database, along with the spectral estimations using the four
different filter sets.

Table 1: Quality metrics for the different selection methods, ap-
plied to the selection of 5 out of 20 Hoffman filters. The met-
hod which maximizes the orthogonality performs better than the
heuristic approach when considering the spectral estimation er-
ror, while the combinatorial method always gives optimal results
with regards to its optimization criterion.

Selection meth. RMS RMSmax ∆E ∆Emax

Equi-spacing 0.0121 0.0472 1.14 5.09
Max orthog. 0.0114 0.0483 1.51 9.72
Comb. RMS 0.0101 0.0447 2.55 13.37
Comb. ∆Emax 0.0106 0.0466 0.45 2.39

We observe that the difference in mean RMS spectral
estimation error is not particularly large between the selec-
tion methods. The maximal ∆E∗

ab, however, varies signif-
icantly. The overall best result when considering all four
quality metrics seem to be achieved with the combinato-
rial method minimizing ∆Emax. Examining the channel
sensitivities of Figure 2 we note that, as expected, the max-
imum orthogonality methods yields peak sensitivities that
are distributed over the entire wavelength interval; how-
ever, they are not equally spaced. We also note that the
sensitivities do not fall off to zero at the extremes of the
wavelength interval we are using in our models. In a prac-
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Figure 2: Spectral sensitivities of the resulting camera channels
obtained by selecting 5 Hoffman filters with 4 different selection
methods. The stapled line represents the joint spectral sensitivity
of the camera and the illuminant.

tical system this should obviously be avoided, typically by
extending the wavelength interval and introducing an IR
cut-off filter. 16

In a second experiment we started with a set of 20
Hoffman filters and 15 Kodak Wratten filters. By allowing
each final channel filter to be a combination of two filters,
this gave us a total 630 filter transmittances to choose from.
However, many filter combinations are not feasible since
the resulting transmittance factor is too low. We therefore
proceeded to a pre-selection of filters by eliminating the
filter combinations which yielded a transmittance factor
of less than one percent. This left us with 181 filters to
choose from. In Tables 2 and 3 we report the resulting es-
timation errors when selecting from 3 to 12 filters with the
algorithm presented in Section 2.3. In Table 2 we set the
parameter r = K̃ for each selection, while in Table 3 we
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Figure 3: Spectral reflectance estimation of four example re-
flectances from the database (Emerald green, Ultramarine, Red
ochre, Mercuric Iodide) using different filter sets with five filters.

chose the value for r which minimized the resulting aver-
age RMS error.

Table 2: Results for the selection method which maximizes the
orthogonality in characteristic reflectance space, applied to the
selection out of a basis of 181 filters created by combinations of
two Wratten and Hoffman filters.

K̃ r RMS RMSmax ∆E ∆Emax

3 3 0.0265 0.0768 12.70 75.89
4 4 0.0165 0.0506 2.34 14.68
5 5 0.0104 0.0485 1.64 14.31
6 6 0.0080 0.0261 0.99 3.96
7 7 0.0057 0.0192 0.47 2.29
8 8 0.0040 0.0166 0.15 0.74
9 9 0.0032 0.0166 0.16 1.12

10 10 0.0023 0.0080 0.06 0.60
11 11 0.0016 0.0049 0.04 0.24
12 12 0.0013 0.0050 0.03 0.15

Several observations can be made from these results.
First, if we consider the results for five filters, the average
RMS error is indeed reduced, compared to when only sin-
gle filters were used (Table 1), although the other measures
are actually increased. Secondly, we note from comparing
Tables 2 and 3 that setting the parameter d = K̃ is not far
from optimal.

Furthermore, we see as expected that the estimation
errors decrease rapidly with increasing number of filters.
With 9 filters the maximum ∆E∗

ab estimation error reaches
1. It is important to keep in mind, however, that these
results are obtained with an simulated camera discarding
noise. In a real system, when noise is present, it is not
necessarily beneficial to increase the number of filters too
much.16,30
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Table 3: Results for the selection method which maximizes the
orthogonality in characteristic reflectance space. The parameter
r is chosen between 3 and 15 as the one which minimizes RMS.

K̃ r RMS RMSmax ∆E ∆Emax

3 3 0.0265 0.0768 12.70 75.89
4 12 0.0160 0.0498 2.43 11.92
5 5 0.0104 0.0485 1.64 14.31
6 5 0.0077 0.0336 0.98 8.80
7 7 0.0057 0.0192 0.47 2.29
8 8 0.0040 0.0166 0.15 0.74
9 5 0.0031 0.0130 0.15 1.01

10 10 0.0023 0.0080 0.06 0.60
11 11 0.0016 0.0049 0.04 0.24
12 11 0.0012 0.0040 0.02 0.09
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Figure 4: Spectral sensitivities of the resulting camera channels
obtained by selecting 12 filters out of a set of 180 combined Hoff-
man and Wratten filters.

5. Conclusion

One of the factors that determine the quality of a multi-
spectral color image acquisition system is its spectral sen-
sitivity. In a relatively common setup a multispectral color
image acquisition system is being implemented by cou-
pling a monochrome digital camera with a set of optical
filters, typically mounted on a filter wheel. Together with
the spectral sensitivity of the sensor and the spectral ra-
diance of the illumination, spectral transmittances of the
filters determine the system spectral sensitivity.

We have reviewed and compared several methods for
the selection of an optimal subset of filters from a set of
available filters. The presented methods present several
advantages and disadvantages. An optimal solution given
any optimization criterion can in theory be achieved with
an exhaustive search approach, in which all possible fil-
ter combinations are evaluated, but this method tend to be

prohibitive in terms of computational complexity when the
number of filters is large.

A faster method is proposed, in which the filters are
chosen sequentially in order to maximize their orthogonal-
ity in a characteristic reflectance space representative of
the application area for the system. This method is found
to yield good results, although suboptimal. In practice, an
adequate solution might be to first use this method to se-
lect a set of more filters than needed, and then apply the
exhaustive search method to reduce the set to the desired
number of filters.
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